NOVEMBER 2001

ADVANCED SUBSIDIARY LEVEL

MARK SCHEME

MAXIMUM MARK : 60

SYLLABUS/COMPONENT : 8701/2
 CHEMISTRY
 (Structured Questions)

Page 1 of 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations - June 2001	8701	2

Question

Number Mark Scheme Details

Part

Mark
1 (a) $\left.\begin{array}{llllll}\operatorname{Mg} & 1 s^{2} & 2 s^{2} & 2 p^{6} & 3 s^{2} & \\ \mathrm{Mg}^{2+} & 1 s^{2} & 2 s^{2} & 2 p^{6} & & \\ 0 & 1 s^{2} & 2 s^{2} & 2 p^{4} & \\ \mathrm{O}^{2-} & 1 s^{2} & 2 s^{2} & 2 p^{6} & & \}\end{array}\right\}$

- is $\mathrm{Mg}^{2+} \quad$ regular (1)
O is O^{2-}
cations surrounded by anions etc. (1)
(ii) Two physical properties
insulator ions unable to move
high m.p./b.p. forces between doubly charged ions are strong insoluble in water conducts when molten (1) for each
(iii) Furnace linings, electrical insulators, spark plugs, ceramics any two
(c) (i) CO (1) and water vapour (1) [or from equations]
(ii) $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(1)$ $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{CaO}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3}(1) \max 3$
[Total:

2 (a) (i) Rate of forward reaction is equal to rate of backward or equivalent. (1)
(ii)

[5]
(b) (i)
$\mathrm{K}_{\mathrm{c}}=\frac{\text { [ester][water] }}{\text { [acid][alcohol] }}$
(ii) Since same number of terms in expression, top \& bottom
(c) (i) ethanol $=$ ethanoic acid $=0.43$ (1)
ethyl ethanoate $=0.57$ (1)
water $=1.57$ (1)
(ii)

$$
\mathrm{K}_{\mathrm{c}}=\frac{0.57 \times 1.57}{0.43 \times 0.43}=4.84
$$

Page 2 of 3	Mark Scheme	Syllabus	Paper
	IGCSE Examinations - November 2001	8701	2

3 (a) red/brown liquid/vapour (1)
(b) Stronger van der Waals' forces between molecules (1) since bromine is a bigger molecule / more electrons than chlorine (1) and has more induced dipoles on its surface (1) Max (2)
[2]
(c) (i) $2 \mathrm{P}+5 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{PCl}_{5}$ (1)
(ii) $\mathrm{PCl}_{5}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+5 \mathrm{HCl}$ (1)
(iii) $\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgCl} \downarrow+\mathrm{NaNO}_{3}$
OR $\mathrm{Cl}^{-}{ }_{(\mathrm{aq})}+\mathrm{Ag}^{+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{AgCl}_{(\mathrm{s})}$
(iv) $\mathrm{AgCl}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$(aq) +Cl OR to $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}$
[4]
(d) (i) $\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{Br}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{BrCH}_{2} \mathrm{Br}$
(ii) Electrophilic addition
(1)
(iii) Electron-rich double bond attracts Br_{2} which is then polarised

CH_{2} CH_{2}
(1)
intermediate $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}^{+}$(1)

Final addition of Br^{-}
[Total:

4 (a) $\left.\quad \begin{array}{ll}\mathrm{N}_{2} & \text { zero } \\ \mathrm{NH}_{4}^{+} & -3\end{array}\right\}$
(b) (i) The triple bond (high energy) needs to be broken
(ii) gives NH_{4}^{+}directly / gives soluble N to soil (1)
$\mathrm{NO}_{2}{ }^{-}$
$\mathrm{NO}_{3}{ }^{-}$
(c) (i) $6.3 \times 10^{-9} \mathrm{~mol} \mathrm{dm}^{-3}$
(ii) Since H^{+}is a product, and this is removed (1)
(iii) lime / a base / ammonia (1)
(d) Waterlogged soils will contain very little oxygen / will discourage nitrifying bacteria (1)
(e) (i)

(ii) tetrahedral, 109 or $109 \frac{1}{2}^{\circ} \quad$ (1)
[Total: max 10]

5 (a) (i) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{9} \mathrm{CHBrCH}_{2} \mathrm{Br}$ (1)
(ii) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{9} \mathrm{CHBrCH}_{3}$
(iii) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{9} \mathrm{CO}_{2} \mathrm{H} \quad$ (1)
(iv) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{9} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$

Page 3 of 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations - June 2001	8701	2

(b) (i) optical isomerism (1)
(1) each

[3]

Br

[2]
(1) each
[Total: 9]

6
$\begin{array}{ll}\text { A Only alcohol } & \begin{array}{c}\text { sodium (1) - bubbles of gas } / \mathrm{H}_{2}(1) \\ \frac{\mathrm{OR}}{\mathrm{OR}} \mathrm{PCl}_{5}(1) \text { misty fumes (1) } \\ \text { carboxylic acid + catalyst (1) smell of } \\ \text { ester (1) }\end{array} \\ \text { Not } \mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \text { or } \mathrm{H}^{+} / \mathrm{MnO}_{4}{ }^{-}\end{array}$

$$
\underline{\mathrm{OR}} \mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \text { tests (1) }
$$

[2]
C alkene and aldehyde
decolourises Br_{2} (water) (1)
red/brown ppt with Benedicts or Fehlings

> OR Ag mirror - Tollens (1)
> DNP test (1) if not used elsewhere

DNP gives red ppt (1)
Benedicts/Tollens/Fehlings positive (1)
[2]
(as C)
[Total: 8]

