

NOVEMBER 2001

ADVANCED SUBSIDIARY LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 8701/2

CHEMISTRY (Structured Questions)

Page 1 of 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations – June 2001	8701	2

Question **Part** Number **Mark Scheme Details** Mark $1s^2$ $2s^2$ 1 (a) Mg ${\rm Mg}^{2+}$ $1s^2$ $2s^2$ 0 $1s^2$ $2s^2$ [2] $1s^2$ $2s^2$ (b) (i) • is Mg²⁺ 0 regular (1) \bigcirc [2] 0 cations surrounded by anions etc. (1) (ii) Two physical properties insulator ions unable to move forces between doubly charged ions are strong high m.p./b.p. insoluble in water conducts when molten [2] (1) for each (iii) Furnace linings, electrical insulators, spark plugs, ceramics [1] any two (c) (i) CO (1) and water vapour (1) [or from equations] $CaO + H_2O \rightarrow Ca(OH)_2$ (1) (ii) $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O \ OR \ CaO + CO_2 \rightarrow CaCO_3 (1) \ max \ 3$ [3] [Total: 10]

2 (a) (i) Rate of forward reaction is equal to rate of backward or equivalent. (1) (ii)

energy

E_{a uncat}

activation energy mentioned (1)

two E_a peaks (1)

reaction pathway

activation energy mentioned (1)

two E_a peaks (1)

(b) (i) $K_c = \frac{[ester][water]}{[acid][alcohol]}$ (1)

(ii) Since same number of terms in expression, top & bottom

or equivalent (1) [2]

[5]

(c) (i) ethanol = ethanoic acid = 0.43 (1) ethyl ethanoate = 0.57 (1) water = 1.57 (1)

(ii) $K_c = \frac{0.57 \times 1.57}{0.43 \times 0.43} = 4.84 \text{ (1)}$ [4]

[marked consequentially from (i)]

[Total: 11]

	IGCSE Examinations – November 2001 8701	2	
3 (a) (b)	red / brown liquid / vapour (1) Stronger van der Waals' forces between molecules (1)	[1]	
(c) (i)	since bromine is a <u>bigger</u> molecule / more electrons than chlorine (1) and has more induced dipoles on its surface (1) Max (2) $2P + 5Cl_2 \rightarrow 2PCl_5$ (1)	[2]	
(ii) (iii) (iv) (d) (i) (ii)	$PCl_{5} + 4H_{2}O \rightarrow H_{3}PO_{4} + 5HCl (1)$ $NaCl + AgNO_{3} \rightarrow AgCl \downarrow + NaNO_{3}$ $\underline{OR} Cl^{-}_{(aq)} + Ag^{+}_{(aq)} \rightarrow AgCl_{(s)} (1)$ $AgCl + 2NH_{3} \rightarrow Ag(NH_{3})_{2}^{+}_{(aq)} + Cl \underline{OR} \text{to } Ag(NH_{3})_{2}Cl (1)$ $CH_{2}=CH_{2} + Br_{2} \rightarrow CH_{2}BrCH_{2}Br (1)$ Electrophilic addition (1)	[4]	
(iii)	Electron-rich double bond attracts Br ₂ which is then polarised		
, ,	CH_2 \parallel \longrightarrow Br^{δ^+} Br^{δ^-} (1) intermediate $CH_2CH_2Br^+$ (1) CH_2 (1)		
	Final addition of Br ⁻		
	[Total:	12]	
4 (a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[2]	
(b) (i) (ii) (c) (i)	The triple bond (high energy) needs to be broken (1) gives NH_4^+ directly / gives soluble N to soil (1) 6.3×10^{-9} mol dm ⁻³ (1)	[2]	
(ii) (iii) (d)	Since H ⁺ is a product, and this is removed (1) lime / a base / ammonia (1) Waterlogged soils will contain very little oxygen / will discourage nitrifying bacteria (1)	[3] [1]	
(e) (i)	H		
(ii)	tetrahedral, 109 or $109\frac{1}{2}^{\circ}$ (1)	[2]	
	[Total:	max 10]	
5 (a) (i) (ii) (iii)	$CH_3(CH_2)_9CHBrCH_2Br$ (1) $CH_3(CH_2)_9CHBrCH_3$ (1) $CH_3(CH_2)_9CO_2H$ (1)		
(iv)	$CH_3(CH_2)_9CH(OH)CH_3$ (1)	[4]	

Mark Scheme

Syllabus

Paper

Page 2 of 3

Page 3 of 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations – June 2001	8701	2

[Total: 9]

6 A Only alcohol sodium (1) – bubbles of gas /
$$H_2$$
 (1)

OR PC I_5 (1) misty fumes (1)
OR carboxylic acid + catalyst (1) smell of ester (1)

Not $H^+/Cr_2O_7^{2-}$ or H^+/MnO_4^{-}

B Only ketone DNP reagent gives red precipitate (1) does not give Tollens or Fehlings
OR $H^+/Cr_2O_7^{2-}$ tests (1)

C alkene and aldehyde decolourises Br_2 (water) (1) red/brown ppt with Benedicts or Fehlings
OR Ag mirror – Tollens (1)
DNP test (1) if not used elsewhere [2]

D aldehyde only DNP gives red ppt (1)
Benedicts/Tollens/Fehlings positive (1) [2]

[Total: 8]

(as C)